Article
Authorship
Date
2007
Publishing House and Editing Place
Elsevier
Magazine
INTERNATIONAL BIODETERIORATION & BIODEGRADATION,
vol. 60
(pp. 226-230)
Elsevier
Summary
Information provided by the agent in
SIGEVA
Abstract A bacterial strain was isolated from a river sediment in Buenos Aires, Argentina, owing to its ability to utilize 2,4-dinitrophenol (2,4-DNP) as the sole carbon, nitrogen and energy source. The strain was identified as Rhodococcus opacus on the basis of its 16S rRNA gene sequence. R. opacus degrades aerobically 0.27 and 0.54 mM within 22 and 28 h, respectively, and releases the nitro groups from 2,4-DNP as nitrites. Aerobic biodegradation processes were performed using a 2-l volume mic...
Abstract A bacterial strain was isolated from a river sediment in Buenos Aires, Argentina, owing to its ability to utilize 2,4-dinitrophenol (2,4-DNP) as the sole carbon, nitrogen and energy source. The strain was identified as Rhodococcus opacus on the basis of its 16S rRNA gene sequence. R. opacus degrades aerobically 0.27 and 0.54 mM within 22 and 28 h, respectively, and releases the nitro groups from 2,4-DNP as nitrites. Aerobic biodegradation processes were performed using a 2-l volume microfermentor at with agitation (200 rpm), and were evaluated by spectrophotometry, high performance liquid chromatography (HPLC) and microbial growth. The absence of 2,4-DNP transformation products was also confirmed by gas chromatography mass spectrometry (GC–MS). As the nitrite released during 2,4-DNP degradation is in addition an environmental toxic agent it was removed by denitrification in an anoxic process. Detoxification was assessed by using luminescent bacteria, algae and seeds toxicity tests. Toxicity was not detected after combining both the aerobic and anoxic processes.
Show more
Show less
Key Words
DETOXIFICATIONBIODEGRADATION2,4 DINITROPHENOLAEROBIC PROCESS